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1 Introduction

The completion of the human genom project gives another major incentive for genetic
research. New biotechnology companies emerge and high expectations prevail that
genetics could for example help to fight diseases or aid efficient food production.

The mere amount of data collected in gene data bases and the variability of biological
phenomena call for mathematical and statistical modelling.

From these models conclusions can be derived and hypotheses generated. These have
then to be validated with already collected data or new designed experiments.

A lot of rather advanced statistical techniques are employed in connection with genetic
research. The aim of our lectures is to introduce some of the most important ones
and show how they work.

1.1 Rough outline of the lectures

• Fundamental Methods:
Basics, Bayesian paradigm Markov chains, Gibbs sampler

• Hidden Markov Models:
Architecture, Inference

• Biological Sequences:
Alignment Methods, Gene Finding

1.2 Literature

Warren J.Ewens, Gregory R. Grant: Statistical Methods in Bioinformatics. Statistics
for Biology and Health, Springer, New York 2001.

Kenneth Lang: Mathematical and Statistical Methods for Genetic Analysis (2nd
edition). Statistics for Biology and Health, Springer, New York 2001.

Rick Durrett: Probability Models for DNA Sequence Evolution. Probability and Its
Applications, Springer, New York 2002.

M.Elizabeth Halloran, Seymour Geisser: Statistics in Genetics. The IMA Volumes
in Mathematics and its Applications, Voliume 112, Springer, New York 1999.

Richard Durbin et al.: Biological sequence analysis, Cambridge university press 1998.

Paul Berg, Maxine Singer: Die Sprache der Gene. Grundlagen der Molekulargenetik,
Spektrum Akademischer Verlag, Heidelberg, 1993
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1.3 Basic facts from biology

The genetic information is contained in the nucleic acid DNA which sequences of
the nucleotides adenine (A), cytosine (C), guanine (G) and thymine (T). These
sequences group together forming double strands of complementary base pairs (A
and T or C and G) like:

5’ C C T G A T T 3’
| | | | | | |

3’ G G A C T A A 5’

The direction of a sequence is indicated by the ends 5’ and 3’. The symbol | stands for
a hydrogen bond. The human genom consists of about 3 · 109 letters of the alphabet
A = {A,C,G,T}. These are grouped in 46 chromosomes: 22 pairs of homologous
chromosomes and two sex chromosomes (male: XY, female XX).

Genes are regions in the genom which induce the production of specific parts of a
cell (especially proteins). In most cases this, so called, gene expression runs in
two steps:

1. Transcription: The DNA double strand is separated in the gene region. One
strand serves as template for the composition of an RNA strand (m-RNA). RNA is a
nucleic acid very similar to DNA. It is composed from the alphabet A = {A,C,G,U}
with thymine of the DNA substituted by uracil (U).

2. Translation: Small strands of t-RNA each connected to one of the 20 amino
acids string along the m-RNA, thereby producing proteins. A group of 3 successive
nucleic acids (codons) on the m-RNA (or t-RNA) represents one amino acid (this
correspondence is the genetic code).

Currently one estimates that only about 10−2 of the genom corresponds to genes.

2



Figure1: Female and male karyogram.

Homologous chromosomes are paired. Notice the differences of the genders regarding
the sex chromosomes X and Y.
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1.4 Mendel’s laws

As starting date of the science of genetics usually the year 1865 is seen:

Mendel, J.G. (1865). Verhandlungen des naturforschlichen Vereines in Brünn, Ab-
handlungen 4, 3-47.

The Bohemian monk Mendel designed experiments with seven discrete traits of gar-
den peas. From his observations he derived the following rules.

Mendel’s first law (law of segregation)

It describes the inheritance of a single trait (for example: blood group):

Such a trait is determined by a discrete inherited factor (gene). Genes occur in dif-
ferent variants called alleles (blood group alleles: A, B, 0). The genotype of an
individual is determined by (usually not ordered) pairs of alleles (blood group geno-
types: AA, A0, 00, B0, BB). When gametes (egg/ovum or sperm/pollen) are formed
(meiosis) the pairs segregate resulting in gametes including only single alleles. Ga-
metes from male and female parents fuse to form a zygote and hereby restore the
doubling factors. Genes and their alleles persist unchanged in the generations. All
alleles from a genotype have equal chance of being passed to an offspring.

Mendel’s second law (law of independence)

Describes the joint behavior of loci controlling different traits:

Alleles at different loci segregate independently.

Remarks 1.1 a) The pairing of alleles might not occur on sex chromosomes. Some
genes are located on X chromosomes only and this is the reason for X-linked diseases
like red-green blindness or hemophilia.

b) Mendel’s second law is valid for genes on different chromosomes. Genes on the
same chromosomes can be regarded as independent only if they are spatially far apart.
Dependence and location is explored in the linkage analysis.
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2 Fundamental Methods

In this section we review the more fundamental methods and their applications.

2.1 Basic definitions from probability theory

Probability models are used to model complex and heterogeneous biological inter-
actions. These models allow to derive quantitative estimations or qualitative conclu-
sions.

Definition 2.1

• A system F of subsets of a set Ω is a σ − field if it satisfies:

1. ∅, Ω ∈ F.
2. For all A ∈ F is Ac := {ω ∈ Ω : ω /∈ A} in F.
3. If Ai ∈ F for all i = 1, 2, 3, ... then so is

⋃∞
i=1 Ai.

• A probability measure P on a σ-field is a function P : F −→ [0, 1] with:

1. P (∅) = 0, P (Ω) = 1.
2. If A1, A2, ... are pairwise disjoint (Ai ∩ Aj = ∅ for i 6= j) then
P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai).

• A probability space is a triple (Ω, F, P ) with a set Ω, a σ -field F of subsets
of Ω and a probability measure P defined on F.

• A real valued random variable X is a function X : Ω −→ R
with X−1((−∞, c)) ∈ F for every c ∈ R.

Remarks 2.2 F is called the algebra of events to which P assigns a probability.

{A : A ⊆ Ω} is always a σ-field and can be used for finite Ω to define a probability
space.

For ”large” Ω (for example the real numbers) the class of probability measures defined
on all subsets does not provide a satisfying consistent theory. Thus smaller families
of subsets (the σ -fields F) are introduced.

Remember that two events A, B ∈ F are called (statistically) independent, if
P (A

⋃
B) = P (A)P (B).

Mendel’s first law implies the independence of the two alleles in a genotype:
p(AA) = p(A)2, p(Aa) = p(A)p(a), p(aa) = p(a)2.
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2.2 Example of probability modelling :
Hardy-Weinberg equilibrium I

Consider an autosomal locus with two alleles A and a. The possible genotypes define
Ω = {AA, Aa, aa}.

How is the frequency (probability) of a genotype pertained in a population?

Assumptions for the simplest model and the consequences for probability:

• Infinite population size: use frequencies to determine probabilities.

• Random mating: independence of genotypes.

• No selection: equal chance of genotypes to produce offsprings (equal fitness).

• discrete generations: parent generations do not produce offsprings in the grand-
child generation.

Given the frequency of the phenotypes at a starting point:

p0(AA) = u0, p0(Aa) = v0 and p0(aa) = w0.

Then the mating outcomes in the following generation are

mating type offsprings frequency
AA × AA AA u2

0

AA × Aa 1/2 AA + 1/2 Aa 2u0v0

AA × aa Aa 2u0v0

Aa × Aa 1/4 Aa + 1/2Aa + 1/4 aa v2
0

Aa × aa 1/2 Aa+ 1/2 aa 2u0v0

aa × aa aa w2
0

From the above assumptions one can calculate the next generation:

u1 = u2
0 + u0v0 + 1

4
v2

0 = (u0 + 1
2
v0)

2

v1 = u0v0 + 2u0w0 + 1
2
v2

0 + v0w0 = 2(u0 + 1
2
v0)(w0 + 1

2
v0)

w1 = 1
4
v2

0 + v0w0 + w2
0 = (w0 + 1

2
v0)

2

Defining the frequency of the alleles A and a according to Mendel’s first law as

pA = u0 + 1
2
v0

pa = w0 + 1
2
v0

one finds for the next generation stabilization:

u2 = (p2
A + 1

2
2pApa)

2 = (pA(pa + pA))2 = p2
A = u1

v2 = 2(p2
A + 1

2
2pApa)(p

2
a + 1

2
2pApa) = pApA = v1

w2 = (p2
a + 1

2
2pApa)

2 = (pa(pa + pA))2 = p2
a = u1
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Remarks 2.3

• The Hardy-Weinberg law states that any next generation is already stable.

• For alleles on sex chromosomes one can show that equilibrium will be attained
only asymptotically.

• Allele frequency of recessive genes can be assessed:
For recessive a the genotype aa is observable from its phenotype. The indepen-
dence condition paa = (pa)

2 then shows that pa can be estimated by
(frequency of the phenotype of aa)1/2.

• Hardy-Weinberg law is also valid for genes with many alleles: pij = (2−δi,j)pipj

• One can show that stability of frequencies (probabilities) is equivalent to

p2
ij = 4piipjj.

• Weakening the above assumptions may cause differing results for the population
dynamics. The adequacy of assumptions has thus to be investigated carefully.

The case with selection (results only): Now the genotypes have different fitness
denoted by wAA, wAa, and waa.

Definition 2.4 The mean fitness w̄ of a population regarding two alleles A and a
with frequency pA and pa is defined by

w̄(pA, pa) = wAAp2
A + 2wAapApa + waap

2
a

The frequencies in the following generation are then given by

pA,1 =
wAAp2

A + wAapApa

w̄(pA, pa)
, pa,1 =

waap
2
a + wAapApa

w̄(pA, pa)

which allows to derive a main theorem of population genetics:

w̄(pA,1, pa,1) ≥ w̄(pA, pa).

The fitness increases with the generations eventually attaining one of the three stable
points: pA = 0 or pa = 0 or pA(wAA − wAa) = pa(waa − wAa).
The first two alternatives indicate survival of the fittest (alleles with low fitness
die out). The third alternative is a stable point (convergence from all points in a
neighborhood) only if waA ≥ wAA, waa. Coexistence of all genotypes is thus restricted
to the case of heterozygote advantage. This mechanism is believed to maintain
several recessive diseases at high frequencies. For example, a single dose of sickle cell
gene protects against malaria.
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2.3 Basic statistical notations

To set our notations we recall statistical definitions which are required later.

Definition 2.5

• A probability distribution (on the real line) is a function F : R → [0, 1]
satisfying:
i) F (x) is non decreasing;
ii) F (−∞) = limx→−∞ F (x) = 0, F (+∞) = limx→+∞ F (x) = 1;
iii) F(x) is continuous on the right and has a limit on the left at each x ∈ R.

• F is called discrete if it is piecewise constant. With 4F (xk) the height of a
jump at point xk one obtains by P (xk) = 4F (xk) probability assignments for
the jump points.

• A non negative function f satisfying F (x) =
∫ x
−∞ f(t)dt for all x ∈ R is called

density of the distribution function F .

• A real valued random variable X defined on a probability space (Ω, F, P ) is
distributed according to F if

P (X ≤ x) := P (ω : X(ω) ≤ x) = F (x).

A random variable is called discrete or continuous if its distribution has this
property.

• The mean µ := E(X) and the variance σ2 := E(X − µ)2 is defined for a

– discrete random variable X as

E(X) =
∑
k

xkP (X = xk);

E(X − µ)2 =
∑
k

(xk − µ)2P (X = xk)

and for a

– real valued continuous variable X with density f as

E(X) =
∫ ∞

−∞
xf(x)dx;

E(X − µ)2 =
∫ ∞

−∞
(x− µ)2f(x)dx.
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Comments:

a) A density function f may not exist for a distribution function F .
b) Neither the mean nor the variance may exist for a given random variable.

We give examples which are most important in biological applications.

• Given a sequence of n identical, independent (Bernoulli) trials with two possible
outcomes (”success”, ”failure”) and the probability p of ”success” in any such
trial. The numbers

B(n, p )(k) =

(
n

k

)
pk(1− p)n−k (1)

define the discrete binomial distribution assessing the probability of k ”suc-
cesses” in the sequence of trials. The mean is np and the variance is np(1− p).

• The random variable X counting the ”successes” in a sequence of independent
Bernoulli trials before the first ”failure” occurs is distributed according to the
geometric distribution:

P (X = n) = (1− p)pn (2)

The corresponding distribution function can be calculated therefrom (exercise!)
as

F (x) = P (X ≤ n) = 1− pn+1

The mean is p/(1− p) and the variance is p/(1− p)2.

• BLAST (Basic Local Alignment Search Tool, Altschul & al., 1990) algorithms
employ random variables which behave asymptotically like geometric distributed
ones: A variable X defined on non negative integers 0, 1, 2, . . . is geometric-
like if

lim
k→∞

P (X ≥ k)

Cpk
= 1 (3)

for some fixed constant C with 0 < C < 1.

• An important discrete distribution is the Poisson distribution given by

P (λ)(k) =
λke−λ

k!
. (4)

It gives the probability of k events in a time interval, if an average of λ obser-
vations can be expected in such an interval. Formally such distributions may
be derived within the theory of Poisson processes and queuing theory. Here the
mean and the variance are both λ.
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• If one records the waiting time in the above Poisson setting one gets a continuous
random variable which is exponentially distributed. It has

f(x) = λe−λx (5)

with x ≥ 0 as density function. This gives by integration F (x) = 1− e−λx.
Further one gets µ = 1/λ and σ2 = 1/λ2.

• The exponential distribution is a special case of the gamma distribution
which has a density function

f(λ,k)(x) =
λkxk−1e−λx

Γ(k)
, x > 0. (6)

The gamma distribution has two arbitrary positive parameters λ and k and
covers other important distributions. For k = 1 one gets the exponential distri-
bution and for λ = 1/2 and k = 1/2 ν with a positive integer ν the chi-square
distribution with ν degrees of freedom. The mean µ and the variance σ2 are
given by

µ =
k

λ
; σ2 =

k

λ2

.

• Finally we mention the familiar Gaussian distribution. The density is

fµ,σ2(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (7)

where the mean µ and the variance σ2 are parameters for the density. The
usual notation for stating that a random variable X is distributed according to
a Gaussian distribution is: X ∼ N(µ, σ2)

Definition 2.6

• The joint distribution F of n random variables X1, . . . , Xn defined on the
same probability space is given by

F (x1, . . . , xn) = P (ω ∈ Ω : X1(ω) ≤ x1, . . . , Xn(ω) ≤ xn)

where x1, . . . , xn are possible values of the random variables.

• X1, . . . , Xn are independent if

F (x1, . . . , xn) =
n∏

k=1

FXk
(xk)

where FXk
is the distribution of Xk.
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Often assumed: X1, . . . , Xn independent with the same distribution (i.i.d).

Note that for discrete random variables independence is given by

P (X1 = x1, . . . , Xn = xn) =
n∏

k=1

P (Xk = xk). (8)

If densities fXk
exist for all FXk

the joint density f associated to F is given in the
independent case as

f(x1, . . . , xn) =
n∏

k=1

fXk
(xk). (9)

Definition 2.7

• The marginal distribution of a subset X1, . . . , Xs of n discrete random
variables X1, . . . , Xn with joint distribution P (X1 = x1, . . . , Xn = xn) is given
by

P (X1 = x1, . . . , Xs = xs) =
∑

xs+1,...,xn

P (X1 = x1, . . . , Xn = xn)

where the summation runs over all possible values of Xs+1 . . . , Xn.

• The conditional probability that Xs+1 = xs+1, . . . , Xn = xn is valid, given
X1 = x1, . . . , Xs = xs is

P (Xs+1 = xs+1, . . . , Xn = xn|X1 = x1, . . . , Xs = xs) =
P (X1 = x1, . . . , Xn = xn)

P (X1 = x1, . . . , Xs = xs)
,

assumed that the denominator is positive.

The right hand side of the definition can be memorized as ”joint distribution
divided by marginal distribution”.

For independent random variables one has with equation (8)

P (Xs+1 = xs+1, ..., Xs = xn|X1 = x1, ..., Xs = xs) = P (Xs+1 = xs+1, ..., Xs = xn).
(10)

The concept of marginal distribution and conditionality applies likewise to continuous
random variables involving integration.

Remember the similarity of the elementary definitions of conditional probability for
two events A and B:

P (A|B) =
P (A ∩B)

P (B)
.
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The expectation of a function g(X) of a random variable X is given in the discrete
case by

E(g(X)) =
∑

i

g(xi)P (xi)

and as
E(g(X)) =

∫ ∞

−∞
g(x)f(x)dx

for continuous variables with density f , provided all entities make sense.

Joint densities (continuous case) and joint probabilities (discrete case) likewise al-
low to define expectations for functions g(X1, . . . , Xn) of dependent or independent
random variables X1, . . . , Xn.

A most important example is:

Definition 2.8

• The covariance σX,Y of continuous random variables X, Y with joint density
f(x, y) is defined as

σX,Y =
∫ ∞

−∞

∫ ∞

−∞
(x− E(X))(y − E(Y ))f(x, y)dxdy;

• for discrete variables one has

σX,Y =
∑
x,y

(x− E(X))(y − E(Y ))P (X = x, Y = y).

Remember that the correlation ρX,Y of X and Y is calculated by

ρX,Y =
σX,Y

σXσY

(11)

with the standard deviation σX =
√

σ2
X of X and that of Y respectively.

Another important concept required is conditional expectation.

Definition 2.9 The conditional expectation of X given Y is for discrete random
variables defined as

E(X|Y = y) =
∑
x

xP (X|Y = y).

The definition holds for all values y with P (Y = y) > 0. Note that the conditional
expectation E(X|Y = y) considered as a function of y is a discrete random variable.

For the more involved continuous case we refer to the textbooks.
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2.4 Bayes’s formula and odds ratios

The definition of conditional probabilities for events A, B with positive probability
shows

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A)

and thus Bayes’s formula

P (A|B) =
P (B|A)P (A)

P (B)
. (12)

Example 2.10 (Color-blindness)
Suppose 2% of a population are color-blind (P (C) = 0.02) and let the probability that
a color-blind person is a woman be P (w|C) = 0.01 What is the probability P (C|m)
for a man to be color-blind?

With P (m) = P (w) = 1/2 and P (m|C) = 1− P (w|C) we get

P (C|m) =
P (m|C)P (C)

P (m)
=

0.99 · 0.02

0.5
≈ 4% �

More general notations of conditional probability involve parameters and hypotheses.

For example, assume one observes n trials, each with two possible outcomes. Under
the hypothesis of i.i.d. Bernoulli trials with probability p for ”success” the (condi-
tional) probability of k observed ”successes” can be calculated as

P (k|B(n, p)) = B(n, p)(k).

If P (k|B(n, p)) is considered as function of p alone (fixed observation k) one gets a
likelihood function.

Statistical point estimation derives parameters like p from observations like k. One
strategy is to take as estimators for the parameters those values which maximize the
likelihood function.

These maximum likelihood estimators can sometimes be found with elementary
techniques. In the Bernoulli example:

∂pB(n, p)(k) =

(
n

k

)
pk−1(1− p)n−k−1(k − np)

For 0 < p < 1 this derivative is zero if and only if k = np and moreover this de-
fines a maximum of P (k|B(n, p)). The maximum likelihood estimator p̂ for binomial
experiments with given n and observed k is therefore:

p̂ =
k

n
(13)
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Example 2.11 (Comparing genetic sequences) Given two (observed) sequences
x = x1, . . . , xn and y = y1, . . . , ym with letters from an alphabet A (e.g. A={A, C,
G, T }) . We would like to know wether x and y are related (homologous) or not.
Thereto the likelihoods of the models I (independent) and R (related) are compared:

Model I: Assume that a letter a occurs independently in the sequences with some
probability pa. The conditional probability for the observations x and y is then

P (x, y|I) =
n∏

i=1

qxi

m∏
i=1

qxi
.

Now assume the x and y are aligned: n = m. This could be achieved by inserting
gaps . A lot of alignment strategies exist to find ”optimal” alignments.

Model R: Aligned pairs ab occur with a joint probability pab. In genetics this is
usually defined as the probability that a and b result from common ancestors. These
probabilities have to be derived from a mathematical model describing
the mechanism of heredity. The conditional probability for the whole alignment
is then given as

P (x, y|R) =
n∏

i=1

pxiyi
.

The ratio of the two likelihoods P (x, y|R) and P (x, y|I) is the odds ratio:

P (x, y|R)

P (x, y|I)
=

∏n
i=1 pxiyi∏n

i=1 qxi

∏n
i=1 qyi

=
n∏

i=1

pxiyi

qxi
qyi

P (x, y|R) > P (x, y|I) corresponds to an odds ratio > 1. In this case hypothesis R is
favored over I. Analogously an odds ratio < 1 supports I.

Usually one prefers to apply log and work with log-likelihood functions and log-
odds ratios:

S = log(
n∏

i=1

pxiyi

qxi
qyi

) =
n∑

i=1

log(
pxiyi

qxi
qyi

) =
n∑

i=1

s(xi, yi)

The last equality uses the log-likelihood ratio for aligned pairs

s(a, b) = log(
pab

qaqb

).

Now, S > 0 recommends R as the more probable model and S < 0 recommends model
I.
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2.5 Entropy, Kullback-Leibler distance, mutual information

Entropy is well established in information theory and could be seen as a measure of
the average uncertainty of an outcome.

Definition 2.12 The (Shannon) entropy of a discrete random variable X having
only a finite number N of possible outcomes xi with P (xi) > 0 is defined as

H = −
N∑

i=1

P (xi) log P (xi). (14)

High entropy corresponds to high uncertainty about the outcome of X. The uniform
distribution, that is P (xk) = 1/N for all k = 1, . . . , N has the maximal entropy

H = −
N∑

i=1

1

N
log

1

N
= log N.

The distribution P (x0) = 1 for one value x0 has the minimal entropy H = 0, the
outcome of X is certain.

If the entropy Hbefore before a measurement is high, the reduction to certainty
(Hafter = 0) or at least to smaller values of Hafter by the measurement gains high
information. The information content is

I = Hbefore −Hafter. (15)

If the logarithm is chosen with base 2 one gets bit as unit of the entropy. The number
of bits can be interpreted as number of dichotomous questions necessary to achieve
certainty. This is why entropy is seen as information, producing the apparently
startling fact that high information and high uncertainty go together.

Example 2.13 (Entropy of DNA) The distribution of {A, C,D, T} at a specific
position can be estimated from the frequencies in a number of related sequences.
The entropy Hi at a conserved position i (one prevailing nucleotide) is smaller than
the maximal entropy Hmax = ln2(4) = 2bit. Hmax −Hi is positive (larger than some
threshold) for conserved positions and almost zero (smaller than some threshold) for
not conserved positions . The information content of a sequence

I =
∑

i

(Hmax −Hi)

is thus a measure for the amount of conserved positions.
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Definition 2.14 For two probability distributions P, Q defined on the same set
x1, . . . , xN the relative entropy or Kullback-Leibler distance is defined by

H(P ||Q) =
N∑

i=1

P (xi) log
P (xi)

Q(xi)

For uniform Q the relative entropy is an information content.

Proposition 2.15 H(P ||Q) ≥ 0 holds with H(P ||Q) = 0 if and only if P = Q.

Proof. Consider f(x) = log(x)− x + 1 for x > 0 with derivatives f ′(x) = 1/x− 1
and f ′′(x) = −(x)−2 < 0. The unique maximum of f is x = 1 with f(1) = 0. This
gives for x > 0 the elementary inequality

log(x) ≤ x− 1,

with equality holding for x = 1 only. Therefrom one gets:

−H(P ||Q) =
N∑

i=1

P (xi) log
Q(xi)

P (xi)
≤

N∑
i=1

P (xi)(
Q(xi)

P (xi)
− 1) =

N∑
i=1

Q(xi)−
N∑

i=1

P (xi) = 0,

showing H(P ||Q) ≥ 0. Equality is attained if and only if Q(xi)/P (xi) = 1 is valid
for all i = 1, . . . , N . �

Note that in general H(P ||Q) 6= H(Q||P ); the relative entropy is not a mathematical
distance.

If P and Q represent distributions according to different hypotheses, the relative
entropy is the expectation of the log-odds ratio.

If Q represents the model with independence of letters in two sequences x and y
(compare second example in 2.4) the relative entropy is a mutual information:

M(x, y) =
n∑

i=1

pxiyi
log

pxiyi

qxi
qyi

(16)

The mutual information quantifies the information one gets about x by observing y.
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2.6 Pattern in sequences

Entropy and mutual information can be used to find unusual patterns in biological
sequences. For example, the last two bases of introns are often coded with AG.
Introns are parts of the DNA spliced out before the transcription and thus not copied
to m-RNA.

Consider the following 20 sequences each with length 30. They are produced with
MATHEMATICA by a random mechanism and some additional manipulation.

T A G T A A G T G A C T G A G A A G G T G C T A T C C A G A

G C A T A C C T C T A A T T A G A T T G T G C C A C C G A T

T T G A G G G A A G G C C A A G T T G C G A G C T C A C A T

C A T A T T G A A A G C C G A G T A A G T T A G C G A C G T

G C G T T T A A T T C T G C A G G T A C C G G G G C T T T C

T G T C C T A T T G G A T A C T C C G A C G T T G T A G A A

T T C C C T C C T C A T A A G A C A A C A C T C C G G T T G

C G A C A T T C C G C A A A A G A T T A C T A C A C T A A G

A T G T G G C T C T A A C G A G C A G T C A C C C C T C G G

C C C T A C T A C C G A T C A G G A T G G G A T C A T A A T

A T G G G T G A C T A A G A C T C A A A G A T C C A C T T C

G G C C C G G A T A C A T T A G T G C G C T C C T A A T C G

C G G G A G T G C T T T T A G A G G G T G G A A A T G G A A

T A T C T A T C C A C T G A A G G A G C T G C A A G G G C C

G A A C C C C A G A T T A G A G G G T T A T C G C G C A A C

T A C C T A C G T G G A A T C T G A A G C A A A G T G G G G

C A G A T T C A C G G A C A A G C A T A G C A C C C G C C C

A A A G C A G G A A C C A A A G A G C G C A T A C A T C T T

A T T G T G G G A G G A T T G A T G T T T A A T G A A C T G

G G G A A G G A T T T G T T A G T A A A T T C C A A T C A G

The overall frequency of bases is Ptotal = (pA, pC , pG, pT ) = (0.285, 0.225, 0.255, 0.235).

For each column s we now calculate the frequency of the occurring bases
Pcolumn(s) = (pA(s), pC(s), pG(s), pT (s)) and therefrom the relative entropy

H(Pcolumn(s)||Ptotal) =
∑

X=A,C,G,T

pX(s) log2

(
pX(s)

pX

)
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Plotting the relative entropy for every column reveals peaks for s = 15 and s = 16.
These are just the columns where manipulation took place.

Figure 2: Relative entropy H(Pcolumn(s)||Ptotal) as function of column number.

To investigate whether columns are correlated we calculate the mutual information
between site s and site s + 1 (s = 1 . . . 39):

M(s) =
∑

X,Y =A,C,G,T

pX,Y (s) log2

(
pX,Y (s)

pX(s)pY (s + 1)

)
.

Here pX,Y (s) represents one of the 16 frequencies of base pairs with base X at position
s and Y at position s + 1. The mutual information is maximal at position s = 15
indicating that the bases in column s = 15 and s = 16 are not independent.

Figure 3: Mutual information of adjacent columns as function of the first of them.

18



3 Estimation Techniques

In case of incomplete information there exist different strategies to estimate interest-
ing parameters. In this chapter we introduce the EM (Expectation Maximization)
algorithm (Dempster & al. 1977) and the Bayes paradigm to update information.

3.1 Gene counting: Hardy-Weinberg equilibrium II

A) Consider a locus with s codominant alleles. The frequency of alleles can be
assessed by counting the frequency of phenotypes.

In a population of size n the counts (X1, ..., Xs) of the different alleles have a
multinomial distribution (joint distribution)

P (X1 = n1, ..., Xs = ns) =
n!∏s

k=1(nk)!

s∏
k=1

pnk
k . (17)

The probabilities pk of the different alleles satisfy p1+. . .+ps = 1. For the counts n1+
. . .+ns = n is valid. Note that the random variables X1, . . . , Xs are not independent!
The (generally unknown) pk are usually estimated by the relative frequencies:

p̂k =
nk

n
(18)

This is a maximum likelihood estimator of pk.

B) Estimating allele frequencies in the presence of recessive alleles. For example,
the blood group genotypes AA and A0 yield the same phenotype. So, how to estimate
the frequencies of allele A?
Assume Hardy Weinberg equilibrium!

Blood group example:

Let the true probabilities of the alleles be pA, pB and p0 and the counts of phenotypes
in a population with size n be nA, nB and n0.
The probability of genotype AA then is p2

A and that of A0 is 2pAp0. This gives the
numbers of respective genotypes in the population

nAA =
nAp2

A

p2
A + 2pAp0

(19)

and

nA0 =
nA2pAp0

p2
A + 2pAp0

(20)
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The estimator for pA is now:

pA =
2nAA + nA0 + nAB

2n
(21)

A and B are codominant and thus nAB can be observed from phenotypes.

Now an iteration process is applied:

Start: guess pA,1, pB,1 and p0,1.

Iteration: For k = 1, 2, 3, ...

nAA,k = nA

p2
A,k

p2
A,k + 2pA,kp0,k

, (22)

nA0,k = nA
2pA,kp0,k

p2
A,k + 2pA,kp0,k

, (23)

and therefrom calculate the update

pA,k+1 =
2nAA,k + nA0,k + nAB

2n
. (24)

The calculations for pB,k are identical after interchanging in the above equations A,
and B. The value for p0,k may be found by the equation

pA,k + pB,k + p0,k = 1

.

Now continue until some stabilization of the values occurs after say M iterations.
The values of pA,M , pB,Mp0,M are then (maximum likelihood) estimates for pA, pB

and p0 respectively.

Example: n = 100, nAB = 10, nA = 60, nB = 30 gives with the initial values
pA,0 = 3/5, pB,0 = 3/10 and p0,0 = 1/10 after 5 iterations (0.35, 0.153, 0.496). The
shown digits are already stable.

Why does this work?

This is a special case of the EM algorithm ! (Exercise!)

20



3.2 EM algorithm

Assume we want to estimate a vector of parameters Θ (like (pA, pB, p0) in the blood
group example) with maximum likelihood techniques. The log-likelihood function
log P (Y |Θ) depends on complete information Y (e.g. nAA, nA0, nAB, nBB, nB0, n00).
If the necessary information is only partially available (e.g. only nAB and n0 from
phenotype) one can employ the expectation maximization (EM) algorithm.
We consider the discrete case, an extension to continuous variables is straightforward
(compare the textbooks).

First observe how the log-likelihood function for observable but incomplete X can be
composed from log-likelihoods with complete information:

log P (X|Θ) = log
∑
Y

P (X, Y |Θ). (25)

The sum is to be taken over all possible values for the missing data Y .

The definition of conditional probabilities yields

P (X,Y |Θ) = P (Y |X, Θ)P (X|Θ)

and thus
log P (X|Θ) = log P (X, Y |Θ)− log P (Y |X, Θ). (26)

Now multiply (26) with the probability P (Y |X, Θn) for the unobservable data Y
given the observations X and ”true” parameters Θn. Summation over all possible Y
gives:

log P (X|Θ) =
∑
Y

P (Y |X, Θn) log P (X, Y |Θ)−
∑
Y

P (Y |X, Θn) log P (Y |X, Θ). (27)

The first term on the right side of (27) is the central function

Q(Θ|Θn) :=
∑
Y

P (Y |X, Θn) log P (X,Y |Θ) (28)

The E-step of the EM algorithm is now to calculate this conditional expectation:

Q(Θ|Θn) = E(log(P (X, Y |Θ)|X, Θn) (29)

The M-step maximizes Q(Θ|Θn) as function of Θ to obtain new parameters Θn+1.

The 2-step procedure is iterated until equilibrium is attained.
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Central to the theory of EM iteration is the following inequality:

Theorem 3.1 Successive EM parameters Θn and Θn+1 satisfy

log P (X|Θn) ≤ log P (X|Θn+1).

Strict inequality is valid if the conditional distributions P (Y |X, Θn)

and P (Y |X, Θn+1) differ.

Proof. From (27) one gets

log P (X|Θ)−log P (X|Θn) = Q(Θ|Θn)−Q(Θn|Θn)+
∑
Y

P (Y |X, Θn) log
P (Y |X, Θn)

P (Y |X, Θ)
.

The last term of this equation is a relative entropy and therefore always non negative
(proposition 2.1).

Θn+1 is chosen as to maximize Q(Θ|Θn). Therefore

Q(Θn+1|Θn)−Q(Θn|Θn)

is non negative too and thus

log P (X|Θn+1)− log P (X|Θn) ≥ 0.

For equality it is necessary that the relative entropy satisfies

H(P (Y |X, Θn)|P (Y |X, Θn)) = 0.

This is only possible if the involved distributions are equal (again proposition 2,1).
�

The theorem states that the log-likelihood is never decreased by an EM iteration and
gives a condition when every EM iteration achieves an improvement (increases the
log-likelihood).

Note that even a convergent EM algorithm might only find local maxima of the
likelihood function.
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3.3 Bayesian paradigm

Maximum likelihood estimation may especially in case of few data produce undesir-
able results. If, for example, some outcome has zero counts in a multivariate scenario
the estimated probability for this outcome is also zero. This may be contrary to
former observations. Thus, a more ”robust” estimation, down-weighting the actual
experiment, may be adequate.

A consistent framework for information update is given by the Bayesian paradigm.
This is a technique which integrates prior knowledge (eventually from different sources)
with Bayes’s formula:

P (θ|M, Y ) =
P (θ|M)P (Y |θ, M)

P (Y |M)
. (30)

Here, P (θ|M) is the a priori distribution (prior) of the parameter of interest θ. It is
a conditional distribution given some initial information (measurement, model, . . . )
M . The posterior probability P (θ|M, Y ) for θ is calculated from the prior and
the likelihood P (Y |θ, M) with new information Y .

Different strategies exist to estimate θ from the posterior probability.

The maximal a posteriori probability (MAP) takes as estimate θMAP which maxi-
mizes the posterior or equivalently

θMAP = argmaxθP (θ|M)P (Y |θ,M).

The posterior mean estimator (PME) takes the mean of the posterior with respect
to the domain Θ of possible parameters θ

θPME =
∫
Θ

θP (θ|M, Y )dθ.

Here the integral is applied to every component of the parameter vector θ.

Remarks 3.2 a) The determination of the prior allows some subjectivity making the
Bayes method controversial.

b) In contrast to ML estimates, MAP and PME are not invariant under nonlinear
transformations of the parameters. This unfavorable feature makes scaling a relevant
issue.
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An important Bayesian prior is the Dirichlet distribution:

D(θ|α) =
1

Z(α)

N∏
k=1

θαk−1
k . (31)

Here, the parameters of interest θ = (θ1, . . . , θN) define probability distributions. The
domain Θ is thus the (n− 1)-dimensional simplex

Θ = {θ | θk ≥ 0 for all k = 1, . . . N and
N∑

k=1

θk = 1}.

The constants α = (α1, . . . , αN) are positive parameters representing a priori infor-
mation and determine the prior.

Z(α) is a normalization factor to make D(θ|α) a density with respect to θ:

Z(α) =
∫
Θ

N∏
k=1

θαk−1
k dθ =

N∏
k=1

Γ(αk)

Γ(
N∑

k=1
αk)

. (32)

The last equation (stated without proof) involves the Gamma function which satisfies
Γ(x + 1) = xΓ(x).

Remarks 3.3 a) It can be shown that the expectation of θk for a Dirichlet distribution
is

E(θk|D(θ|α)) = αk · (
N∑

k=1

αk)
−1.

b) The Dirichlet distribution is connected to unit scale gamma distributions

f(1,αk)(xk) =
1

Γ(αk)
θαk−1

k e−xk :

For independent variables X1, . . . , XN with Xk distributed according to f(1,αk)(xk) the
ratios

θk =
Xk∑N

k=1 Xk

have as joint density over Θ the distribution D(θ|α). This fact allows to sample
Dirichlet distributions from the more accessible gamma distributions.
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The following theorem states that the Dirichlet distribution is the conjugate prior
for the multinomial distribution.

Theorem 3.4 For multinomial observations

P (n|θ) =
N !∏s

k=1 nk!

s∏
k=1

θnk
k ,

with Dirichlet prior D(θ|α) and a posteriori distribution

P (θ|n, α) =
P (n|θ)D(θ|α)

P (n|α)
, n = (n1, . . . , ns)

the following is valid (A =
∑s

k=1 αk):

a) P (θ|n, α) = D(θ|n + α) ,

b) θPME
i =

ni + αi

N + A
, i = 1, . . . , s.

Proof. First one gets

P (θ|n, α) =

N !∏s

k=1
nk!

∏s
k=1 θnk

k
1

Z(α)

∏s
k=1 θαk−1

k

P (n|α)
∝

s∏
k=1

θnk+αk−1
k .

Thus P (θ|n, α) is proportional to D(θ|n + α). But both distributions are normalized
with respect to θ and this forces the equality a).

From this result and (32) we calculate for the posterior mean estimator θPME:

θPME
i =

∫
Θ

θiD(θ|n + α)dθ =
1

Z(n + α)

∫
Θ

s∏
k=1

θnk+αk−1+δki
k =

Z(n + α + ei)

Z(n + α)
.

ei is a vector having 1 at position i and 0 else. Now

Z(n + α + ei)

Z(n + α)
=

s∏
k=1

Γ(nk + αk + ei)Γ(
s∑

k=1
nk + αk)

s∏
k=1

Γ(nk + αk)Γ(
s∑

k=1
nk + αk + ei)

=
Γ(ni + αi + 1)Γ(N + A)

Γ(ni + αi)Γ(N + A + 1)
=

ni + αi

N + A

and this is statement b). �
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Remarks 3.5 a) Invoking a Dirichlet prior to multinomial observations and taking
the PME mimics adding extra observations α to the the actual measurement and
taking the ML estimator. This is why the αi are called pseudocounts.

b) For fixed pseudocounts and growing number of actual observations θPME approaches
the ML and is thus a consistent estimator.

c) For large values of α, the estimated parameters do not change ”too much” after
adding few observations. This makes results more ”robust”.

Example 3.6 The 15th column of the above sequence example has the following base
counts:

n = (nA, nC , nG, nT ) = (13, 3, 4, 0)

The ML estimator for the probabilities in this column is

pML = (13/20, 3/20, 4/20, 0/20) = (0.65, 0.15, 0.20, 0.00).

Assume we take a Dirichlet prior with

α = (20, 20, 20, 20)

The corresponding posterior mean estimator is then

pPME = ((13+20)/100, (3+20)/100, (4+20)/100, (0+20)/100) = (0.33, 0.23, 0.24, 0.2).

This result is the same as if we had 80 further sequences where the bases in the
respective column are univariate distributed. As a thumb rule one could thus state:

Choose the size of pseudocounts α similar to the number of already investigated se-
quences (if the results are comparable).
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4 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods have a variety of statistical applica-
tions. They allow to simulate complex stochastic processes and to calculate (subopti-
mal) estimators in parameter spaces with high dimensionality. Especially in genetics
these techniques are nowadays frequently applied.

4.1 Markov chains

The theory of Markov processes is well developed and deserves lectures of its own.
We restrict our attention to discrete time finite Markov chains. These are more
simple than general processes, but are highly relevant for applications like the con-
struction of substitution matrices (PAM) and the modelling of evolutionary processes.

Definition 4.1 Let (Xn)n∈N0 be random variables with values in a finite set S (state
space). (Xn)n∈N0 is a Markov chain if for all n∈ N0 and (si)

n
i=0 ⊆ S the conditions

P (Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, . . . , X0 = s0) = P (Xn+1 = sn+1|Xn = sn)
(33)

are satisfied.

The probabilities q(k) = P (X0 = k) define the initial distribution and the matrix

Pn+1 := (pn+1(i, j))1≤i,j≤|S|

with pn+1(i, j) = P (Xn+1 = j|Xn = i) is the transition matrix composed of the
transition probabilities from state i to state j at time n + 1.

Note that we have, as usual, identified S with the finite set of integers {1, . . . , |S|}
and interpreted the index of Xn+1 is as time.

The condition (33) is a property of memoryless:

The transition probabilities
pn+1(i, j)

between two states i and j depend on the last state i only and not on the further
history.

If the transition matrices do not change with time:

Pn+1 = P1 =: P

for all n ∈ N the sequence (Xn)n∈N0 is called homogeneous Markov chain.

Note that the matrices Pn+1 are stochastic: Matrix elements are non-negative and
rows sum up to one.

27



Remarks 4.2 Every sequence (Mn)n∈N of stochastic |S|× |S|-matrices together with
a probability distribution q on S determines a Markov chain. To establish this, one
defines for all t ∈ N0 the joint probabilities for (Xn)n∈N0 as

P (X0 = s0, . . . , Xt = st) := q(s0)M1(s0, s1) · · ·Mt(st−1, st).

The consistency theorem of Kolmogorov allows to extend these finite dimensional
distributions to a joint distribution of the entire Markov chain.

Definition 4.3 A Markov chain is stationary if (Xn)n∈N0 and (Xn+1)n∈N0 have the
same (joint) distribution.

Remarks 4.4 For a homogeneous Markov chain (Xn)n∈N0 the following statements
are equivalent (Exercise):

1. (Xn)n∈N0is stationary

2. X0 and X1 have the same distribution

3. The initial distribution q is invariant under P: qP = q.

Homogeneous Markov chains can be visualized by (directed) graphs: vertices are
the states and an arrow from i to j, with a number p(i, j) attached, indicates the
possibility to pass from i to j with probability p(i, j). If p(i, j) = 0 no arrow is shown.
If p(i, i) = 1, the state i is absorbing. Once the chain gets to this state it remains
there.

Example 4.5 Let S = {0,±1, . . . ,±N}, q(0) = 1, p(N, N) = p(−N,−N) = 1, and,
for |i| < N :

p(i, i + 1) = u, p(i, i− 1) = v with u + v = 1 and p(i, j) = 0 in all other cases. Such
a Markov chain is called simple random walk with absorbing barrier.

It could model a two-player game with each player having a bankroll N . At each turn
the first player wins +1 from the second with probability u and loses 1 with probability
v. The vertices −N and N are absorbing. They represent the ruin of the players.
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In the sequel we assume that all Markov chains are homogeneous (if not
otherwise stated).

Definition 4.6 The probability of a transition from state i to state j in k steps is
given by

p(k)(i, j) := P (Xk = j|X0 = i),

and the probability of finding the state j at time k is

q(k)(j) := P (Xk = j).

Further denote as q(k) and P(k) the respective distribution and k-step transition
matrices.

Theorem 4.7 The k-step transition probabilities p(k)(i, j) satisfy the
Kolmogorov-Chapman equation

p(k+l)(i, j) =
∑
s∈S

p(k)(i, s)p(l)(s, j) (34)

or in matrix form

P(k+l) = P(k)P(l).

Proof. With the formula for total probability and the Markov property one
obtains:

p(k+l)(i, j) = P (Xk+l = j|X0 = i) =
∑
s∈S

P (Xk+l = j, Xk = s|X0 = i)

=
∑
s∈S

P (Xk+l = j|Xk = s)P (Xk = s|X0 = i) =
∑
s∈S

p(k)(i, s)p(l)(s, j).

�

The following special cases are especially important:
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The backward equation

p(1+l)(i, j) =
∑
s∈S

p(i, s)p(l)(s, j) (35)

or
P(1+l) = PP(l)

and the forward equation

p(k+1)(i, j) =
∑
s∈S

p(k)(i, s)p(s, j) (36)

or
P(k+1) = P(k)P.
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Analogously, one has for the unconditional probabilities q(k)(j)

q(k+l)(j) =
∑
s∈S

p(k)(s)p(l)(s, j) (37)

or
q(k+l) = q(k)P(l).

In particular one has again a forward equation

q(k+1) = q(k)P

and a backward equation
q(1+l) = qP(l).

These equations establish a main result:

Theorem 4.8 For homogeneous Markov chains the k-step transition probabilities
p(k)(i, j) are the elements of kth power of the matrix P:

P(k) = Pk

The asymptotic behavior of a homogeneous Markov chain can thus be studied by
examination of the stochastic matrix P.

To discuss convergence of Pk or q(k) for growing k we need some properties of stochas-
tic matrices. We do not give proofs here, instead refer to textbooks (look up for Perron
and Frobenius theorems).

For a matrix, P > 0 denotes that all entries are strictly positive.

Definition 4.9 A stochastic matrix P is called primitive if there exists a k0 ∈ N
with Pk0 > 0.

Remarks 4.10 For a transition matrix P of a homogeneous Markov chain primi-
tivity implies that from any initial state i any state j is reached in k0-steps with a
positive probability p(k0)(i, j) (j is accessible from i).

Pk0 > 0 implies Pk > 0 for all k > k0 (Exercise).

A primitive P has r = 1 as simple eigenvalue with eigenvector λ(1, . . . , 1)T (T means
transposed and λ is any real number). The other eigenvalues have absolute values
smaller than 1. These facts are essential for the following theorem.
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Theorem 4.11 Let P be a primitive stochastic n× n-matrix. Then

lim
k−→∞

Pk =

 y1 . . . yn
...

...
y1 . . . yn

 (38)

with the left-eigenvector y = (y1, . . . , yn) uniquely determined by yP = y and
y1 + . . . + yn = 1.

Proof. For example: chapter IV in B. Huppert, Angewandte Lineare Algebra,
deGruyter, Berlin, 1990. �

Remarks 4.12 The left-eigenvector y defines an invariant measure on S. Moreover
the Markov chain starting with any initial distribution q ends up with this limit
distribution (k growing to infinity):

q(k) = qPk −→ q

 y1 . . . yn
...

...
y1 . . . yn

 = y

To handle more general cases than primitive Markov chains one defines an equivalence
relation on the states of a Markov chain.

Definition 4.13 States i and j of S communicate (i ∼ j) if i is accessible from j
and j is accessible from i.

Remarks 4.14 It is easily seen that ∼ is symmetric, reflexive and transitive, and
thus defines a decomposition of S in disjoint equivalence classes C (Exercise).

Definition 4.15 A class C of communicating states is recurrent (or essential) if
all states accessible from states within C belong to C; otherwise C is called transient
(or inessential).

Remarks 4.16 In the above example (two player game) one has three classes:
The recurrent classes (”game over”) C1 = {−N} and C2 = {N} and the transient
class (”game ongoing”) C3 = {−N + 1, . . . , N − 1}.
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Theorem 4.17 Transient classes C are left in the long run:

lim
k−→∞

P (Xk ∈ C) = 0

Recurrent classes C give rise to stationary distributions yq with yq
k = 0 for k not in

C and yq
k > 0 for k in C.

A general stationary distribution y has the form

y =
∑

C recurrent

λC yC with λC ≥ 0 and
∑

C recurrent

λC = 1. (39)

Proof. See for example VIII 3 Theorem 1 and VIII 4 Theorem 2 in A.N.Shiryayev,
Probability, Springer 1984. �

The theorem implies that eventually it might be enough to include only recurrent
states in the modelling of long running processes. Transient states (if any) could in
such cases be considered as died out and a reduced model might do the job.

Definition 4.18 A Markov chain is called indecomposable if all its states are
recurrent and communicate (one equivalence class of ∼ only ).

Remarks 4.19 The transition matrix of a Markov chain with essential states only
can be brought to block form (by changing the enumeration of states if necessary):

P =


A1 0 . . . 0

0 A2
. . .

...
...

. . . . . . 0
0 . . . 0 Ar

 . (40)

The matrices A1, . . . , Ar correspond to r equivalence classes of communicating states.
Every matrix together with the corresponding indecomposable class of recurrent
communicating states defines an indecomposable Markov chain. These r chains can
be be studied independently.

Definition 4.20 The period d(j) of a state j is the largest positive integer l satisfy-
ing:

p(n)(j, j) > 0 is valid only if n has the form n = l ·m (m ∈ N).
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Theorem 4.21 All states of an indecomposable class the same period.

Proof. Any two states i and j communicate. Thus, there are numbers k and l with
p(k)(i, j) > 0 and p(l)(j, i) > 0. By the Kolmogorov-Chapman equations one gets

p(k+l)(i, i) ≥ p(k)(i, j) p(l)(j, i) > 0.

Therefore k + l is divisible by the period d(i) of state i.

Suppose there is an integer n > 0 not divisible by d(i). Then the number k + l + n is
also not divisible by d(i) and thus p(k+l+n)(i, i) = 0. But again from the Kolmogorov-
Chapman equations one has

0 = p(k+l+n)(i, i) ≥ p(k)(i, j) p(n)(j, j) p(l)(j, i).

This forces p(n)(j, j) = 0.

Thus, p(n)(j, j) > 0 requires that n is divisible by d(i) and thus d(i) ≤ d(j).

By changing roles of i and j one gets d(j) ≤ d(i) and finally d(i) = d(j) �

The theorem shows that the following definition makes sense.

Definition 4.22 Denote the (common) period of states of an indecomposable class
C as d(C). If d(C) = 1 the class (and the corresponding Markov chain) is called
aperiodic.

Classes C which are not aperiodic can be divided in cyclic subclasses as follows
(d := d(C) > 1):

Chose a state s ∈ C and define the subsets (dependent of s) by:

C0 = {j ∈ C : p(n)(s, j) > 0 ⇒ n ≡ 0(mod d)}

C1 = {j ∈ C : p(n)(s, j) > 0 ⇒ n ≡ 1(mod d)}

. . .

Cd−1 = {j ∈ C : p(n)(s, j) > 0 ⇒ n ≡ (d− 1)(mod d)}

Then, obviously, one gets a disjoint partition

C = C0 ∪ C1 ∪ . . . ∪ Cd−1.
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Theorem 4.23 In one step a state of class Ck goes exclusively to a state of class
C(k+1)mod d.

Proof. Let i be in Ck and p(1)(i, j) > 0 for a state j. p(n)(s, i) > 0 requires
n ≡ k(mod d) or n + 1 ≡ (k + 1)(mod d). The last equation and the inequality

p(n+1)(s, j) ≥ p(n)(s, i) p(1)(i, j) > 0

show that j is in C(k+1)mod d. �

Remarks 4.24 The theorem states the cyclic character of transitions for states of
period d :

The corresponding transition matrix has block structure:

A state initially in C0 will be in a specific class Ck at ”times” t with t = k + sd
(s = 0, 1, . . .). Thus d-step transitions restricted to the classes Ck define transition
matrices

P(k) := (p(i, j)
(d)
i,j∈Ck

)

for indecomposable aperiodic Markov chains.

The matrices P(k) are primitive (Exercise!).

The discussed partition of homogeneous (recurrent) Markov chains into communicat-
ing aperiodic classes is why Markov models are often assumed to be aperiodic and
irreducible.
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4.2 Example: Wright Fisher Model

Recall the the situation of section 2.2. where the Hardy Weinberg equilibrium for two
alleles is obtained. We assumed infinite population. What changes if the population
is (more realistically) considered as finite?

Now assume one has in each discrete generation 2N gametes of allele type A1 or A2.
The random variables Xn count the number and gametes A1 in generation n. In
every daughter generation the gametes are independently and with equal probability
chosen from the parent gametes. Then, the probability to encounter l gametes of type
A1 in a daughter generation if k are in the parent generation is given by a binomial
distribution:

p(k, l) := P (Xn+1 = l|Xn = k) =

(
2N

l

)(
k

2N

)l(
1− k

2N

)2N−l

= B(2N,
k

2N
)(l)

(41)
Therefore (Xn)n∈N0 is a homogeneous Markov chain.
The 2N + 1 states fall into 3 communicating classes:
k = 0 implies p(0, 0) = 1 and p(0, l) = 0 for all l 6= 0.
k = 2N implies p(2N, 2N) = 1 and p(2N, l) = 0 for all l 6= 2N .
For 1 ≤ l, k ≤ 2N − 1 one has p(k, l) > 0. All those states communicate and define
one transient class with respect to ∼.

All stationary distributions are of the form (compare (39)) pδ0 +(1−p)δ2N . Further-
more one can show that every initial distribution (of X0) tends to such a stationary
distribution with

p =
1

2N
EX0 =

1

2N

2N∑
k=0

kP (X0 = k).

This is the average fraction of chains terminating in k = 0.

The following figure shows several realizations of a Wright-Fisher process with
2N = 100 and p = 1/2

36



4.3 Gibbs Sampling

Sampling and annealing techniques are applied for simulation and parameter esti-
mation. Such methods help when direct calculations are not feasible due to the
computational size of the problem. As example one may regard the distribution of
specific patterns in DNA sequences.

If all elements x of a finite probability space Ω have positive probability P (x) > 0
one can write P in Gibbs form:

P (x) =
1

Z
exp(−H(x)), (42)

with energy H and the normalization constant

Z =
∑
z∈Ω

exp(−H(z)), (43)

called partition function. P is also called a Gibbs distribution.

Thereto, one only has to define

H(x) := − ln(P (x))− ln(Z)

with any positive constant Z to gain

exp(−H(x)) = P (x) · Z.

Choosing Z as in (43) provides the representation (42).

In many applications Ω can be regarded as product

Ω =
∏
t∈A

St

of finite state spaces St = {s1, . . . , sn}.

St could, for example, be the alphabet of amino acids at site t and A be the collection
of considered sites.

More generally, A may describe a multidimensional domain with a neighborhood
structure defined on the sites. In image analysis A is often an area of pixels and
St comprises possible grey values for pixel t. In the following xt denotes the t-th
component of x ∈ Ω.

Definition 4.25 A neighborhood system on a set A is a family N = {At}t∈A of
subsets of A such that for all t ∈ A:

a) t 6∈ At and b) t ∈ As ⇒ s ∈ At.

The subset At is called neighborhood of site s.
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The couple (A, N) defines a graph with vertices A and edges N : Sites s and t are
linked by an edge if and only if they are neighbors (s ∈ At).

Definition 4.26 Any element t ∈ A is a clique. A subset C ⊂ A with more than
one element is called clique of the graph (A, N) if and only if any two distinct sites
of C are mutual neighbors. A clique is called maximal if for any site t 6∈ C, C ∪{t}
is not a clique.

With neighborhoods and cliques we can define the important term Gibbs potential.

Definition 4.27 A Gibbs potential on Ω =
∏

t∈A St relative to a neighborhood
system N is a collection {VC}C⊂A of real functions VC defined on Ω with
i) VC ≡ 0 if C is not a clique,
ii) for all x, y ∈ Ω and all C ⊂ A the equality xt = yt for all t ∈ C implies

VC(x) = VC(y).

An energy H derives from the potential {VC}C⊂A if

H(x) =
∑

C:Clique

VC(x)

Remarks 4.28 Potentials VC are determined by the values on C alone. These cliques
are often small, including only the nearest neighbors. As a consequence, the possi-
ble values of the energy function H are also restricted. Therefore, the calculation
workload may considerably be reduced if Gibbs potentials are involved.

The Gibbs sampler uses conditional distributions like the following:

P (xt|xA\t) =
exp(−H(xtxA\t))∑

zt∈St
exp(−H(ztxA\t))

. (44)

Here we denote as xtxA\t the (product) state with value xt at site t and value xA\t
for the product of all other sites.

As application of the developed terminology we calculate conditional distributions
in the case of the famous Ising model. This model was introduced 1925 by Ising
to understand qualitatively the phenomenon of phase transition in ferromagnetic
materials.
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Example 4.29 The Ising model is defined on a space Ω =
∏

t∈A St with state spaces
St = {−1, 1}. There are only 2-element cliques C = {s, t} of neighbored elements s
and t (denoted here s ∼ t). The Gibbs potentials are defined by Vs,t(x) = −xsxt for
s ∼ t and VC ≡ 0 else. Thus, the energy is given by

H(x) = −
∑
s∼t

xsxt.

For the conditional distributions one gets

P (xs|xS\s) =
exp(

∑
s∼t xsxt)

exp(−∑s∼t xt) + exp(
∑

s∼t xt)
,

and especially

P (xs = 1|xS\s) =
1

1 + exp(−2
∑

s∼t xt))
,

P (xs = −1|xS\s) =
1

1 + exp(+2
∑

s∼t xt))
.

Conditional probabilities, like the above, are encountered in the more general context
of Markov random fields.

Definition 4.30 Given a finite product space Ω =
∏

t∈A St with a neighborhood sys-
tem N = {At}t∈A as above. The set of random variables (Xt)t∈A, taking as values
the coordinates xt, is a Markov random field with respect to N , if for all sites t
one has:

P (Xt = xt|X(A\t) = x(A\t)) = P (Xt = xt|X(At) = x(At)).

The conditional probabilities P (Xt = xt|X(At) = x(At)) are called local characteristics
of the Markov random field.

Remarks 4.31 A Gibbs distribution with respect to a neighborhood system is the
distribution of a Markov random field with respect to the same neighborhood system.
The Gibbs-Markov equivalence theorem moreover states that Markov fields satisfying
certain positivity conditions are associated to Gibbs distributions.

In the field of Gibbs sampling local characteristics may be invoked for the definition
of the relevant (homogeneous) Markov chains:
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Given a Gibbs distribution P on a finite space Ω =
∏

t∈A St. With the above notations
we define for elements x, y ∈ Ω and subsets I ⊂ A

PI(x, y) :=
{

Z−1
I exp(−H(yIxA\I)) for xA\I = yA\I ;

0 else.
(45)

The PI(x, y) describe a transition from x to y which changes x at most on the set I.
If I is chosen to consist of one element t ∈ A only, the values of PI(x, y) which are
not zero are just the local characteristics of the underlying Markov field.

Definition 4.32 A probability distribution µ and a transition matrix P of a homoge-
neous Markov chain satisfy the detailed balance equation if one has for all x, y ∈ Ω

µ(x)p(x, y) = µ(y)p(y, x). (46)

Remarks 4.33 Detailed balance means that the homogeneous Markov chain associ-
ated to µ and P is reversible in time.

Further, µ is invariant for P . This can be seen by summing up (46) with respect to
x: ∑

x

µ(x)p(x, y) =
∑
x

µ(y)p(y, x) = µ(y). (47)

These equations constitute the global balance

µP = µ.

Theorem 4.34 The Gibbs distribution P and its local characteristics PI satisfy the
detailed balance equations

P (x)PI(x, y) = P (y)PI(y, x). (48)

In particular, P is invariant for PI .

Proof. If xA\I 6= yA\I both sides of (48) are zero.

For xA\I = yA\I one has x = xIyA\I and y = yIxA\I . Therefrom it follows that

exp(−H(x))
exp(−H(yIxA\I))∑
zI

exp(−H(zIxA\I))
= exp(−H(y))

exp(−H(xIyA\I))∑
zI

exp(−H(zIyA\I))
.

This equation is just

Z · P (x) · PI(x, y) = Z · P (y) · PI(y, x),

establishing the detailed balance. The above remark shows that P is invariant. �

40



An enumeration E = {t1, . . . , tN} of the sites t ∈ A (N = |A|) fixes a visiting
scheme. We identify tk and k and define with the associated local characteristics
the transition probabilities

PE(x, y) = P{1} · . . . · P{N}(x, y). (49)

The corresponding Markov chain is realized by the following algorithm:

1) Draw a initial configuration x according to a start distribution (e.g. µ = δx).

2) Update x in position one by y1 randomly drawn from P{1}(x, y). The new config-
uration y = y1x{2,...,N} has to be updated at position two.

Continue this way until a sweep is finished, that is position N has been reached.

3) Carry out many sweeps.

The justification for the above algorithm is:

Theorem 4.35 For every initial distributions µ

lim
n→∞

µ (PE)n(x) = P (x)

is valid for all configurations x ∈ Ω .

Proof. The Gibbs distribution P is invariant for PI and thus also for compositions
of local characteristics. Since the probability to get yt at position t is positive, the
transition probability PE(x, y) is strictly positive. Therefore the Markov chain is
primitive and the theorem follows from Theorem 4.11 and Remark 4.12. �
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4.4 Application to multiple sequence alignment

Different individuals or species may have descended from a common ancestor. Their
DNA or protein sequences are then expected to contain domains of great similarity. It
is the issue of multiple sequence alignment to find such domains and to align the
sequences there along. The ’best’ multiple alignment is usually found by maximizing
an alignment score. If the number of sequences is large, brute force methods are, due
to exploding running times, not feasible. Different alternative techniques exist. We
discuss an application of Gibbs sampling for ungapped local alignments published in:

Lawrence & al. (1993). Detecting subtle sequence signals: A Gibbs sampling strategy
for multiple alignment. Science 262, 208-214.

Assume we have N protein sequences with a background (overall) frequency of the
20 amino acids p1, . . . , p20. The task is to find in every sequence a segment of length
W , such that the resulting 20 segments are most ’similar’.

Every possible alignment can be seen as an array with N rows and W columns.

We construct a Markov chain with the possible arrays as states. Transition from one
state to another occurs with positive probability only, if states differ at most in one
row (the alignment is changed for one sequence only).

Example for an update in row 3:

V Q A A . . . N V Q A A . . . N
V R A A . . . R V R A A . . . R
R Q B A . . . C −→ V Q B A . . . N
V Q R A . . . N V Q R A . . . N

...
...

V Q A A . . . N V Q A A . . . N

One defines for an amino acid j in column i of an array a the probability estimate

qi,j(a) =
ci,j(a) + bj

N(a) + B
.

Here, ci,j(a) is the count of j in column i of a and N(a) the number of columns in
a. The bj are pseudocounts (B =

∑
j bj) which are introduced to make estimations

more ’robust’ and to assure that qi,j(a) > 0 (compare Theorem 3.5).
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The transitions from one state s of the Markov chain to another state is
defined as follows:

To update s, a row r is chosen randomly (equal chance).

Then, the probabilities qi,j(s
(r)) are calculated. The reduced array s(r) results by

removing row r from s.

The probability of a segment x = x1x2 . . . xW with amino acid xi at position i is
under the background probability

Px = px1 . . . pxW
, (50)

and under the estimates for the reduced array

Qx(s
(r)) = q1,x1(s

(r)) . . . qW,xW
(s(r)). (51)

The likelihood ratios lx(s
(r)) = Qx(s

(r))/Px define the probabilities

P (s, t) =
lx(s

(r))∑
y ly(s(r))

(52)

for a transition to a neighbored alignment t with segment x at row r. The sum in the
denominator runs over the (Lr −W + 1) segments of length W (in sequence r with
length Lr).

Denote as z the segment originally at row r in state s. Now, the definition of P (s, t)
immediately yields:

P (s, t)

P (t, s)
=

q1,x1(s
(r)) . . . qW,xW

(s(r))

q1,z1(s
(r)) . . . qW,zW

(s(r))
· pz1 . . . pzW

px1 . . . pxW

. (53)

Note, that qi,yi
(s(r)) = qi,yi

(t(r)), since the probabilities come from the same reduced
array.

Further, the relative entropy of the considered probabilities p and q is given by

H(q(s)||p) =
W∑
i=1

20∑
j=1

qi,j(s) log
(qi,j(s)

pj

)
.

States s with high relative entropy correspond to good alignments. These strongly
differ from alignments randomly selected according to p (compare Section 2.5).
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Now, associate to the states s the probabilities

λs = C ·
W∏
i=1

20∏
j=1

(qi,j(s)

pj

)ci,j(s)
, (54)

with a suitable constant C.

Neighbored states s and t differ only in one row r. The corresponding counts ci,j(s)
and ci,j(t) for column i are either identical for all 20 values of j or are identical for
18 values of j and differ by +1 and −1 for the remaining two values of j.

Therefore it is reasonable to approximate qi,j(s) and qi,j(t) by qi,j(s
(r)) = qi,j(t

(r)).

From this approximation and the definition of λ one gets

λt

λs

≈ q1,x1(s
(r)) . . . qW,xW

(s(r))

q1,z1(s
(r)) . . . qW,zW

(s(r))
· pz1 . . . pzW

px1 . . . pxW

, (55)

where again x1, . . . , xW correspond to row r in state t, and respectively z1, . . . , zW to
state s.

Equation (53) yields
λt

λs

≈ P (s, t)

P (t, s)
.

Thus, the detailed balance equation

λtP (t, s) ≈ λsP (s, t)

is (with good approximation) satisfied for neighbored states.

For states not neighbored, the equation is also valid (both sides are zero). Therefore
λ is stationary for P .

Now, simulate a Markov chain with the described transition probabilities
for neighbored state and any initial distribution.

This is just a Gibbs sampling with random visiting scheme (remember the non-
deterministic choice of a row r in state s). States with high probability according
to the stationary distribution are visited comparatively frequently and may thus be
recognized. Furthermore, log λs is a linear function of the relative entropy.

Thus frequently visited states and good alignments go together.

44



4.5 Metropolis-Hastings algorithms

Monte Carlo methods are used to get random samples from a complicated proba-
bility distribution µ. The purpose is to calculate from those ”observations” quantities
(e.g. the mean value of µ) which may not be accessible analytically.

Markov Chain Monte Carlo (MCMC) techniques provide the samples by running
a Markov chain with limit distribution µ for a ”long” time. An important example
is the Gibbs sampling introduced in the preceding sections.

More general is the Metropolis-Hastings algorithm:

Assume (again) that the distribution of interest µ is given on a finite space Ω with
µ(x) > 0 for all x ∈ Ω.

Choose a transition matrix Q describing transition probabilities between elements of
Ω with entries q(x, y) strictly positive.

In this framework the probability distributions (x fixed)

P (y|x) = q(x, y)

are called proposal distributions. From the current state x a new state y is pro-
posed with a given probability.

Now, define the probability a(x, y) that the state y proposed from current state x is
accepted:

a(x, y) = min(1,
µ(y)q(y, x)

µ(x)q(x, y)
) (56)

Theorem 4.36 A homogeneous Markov chain with transition matrix P given by

p(x, y) = q(x, y)a(x, y) for x 6= y

and
p(x, x) = 1−

∑
x 6=y

p(x, y)

has limit distribution µ.

Proof. All transition probabilities p(x, y) including p(x, x) are positive (Exercise!).

The Markov chain is thus trivially primitive (irreducible and aperiodic). Theorem
4.11 and Remarks 4.12 state that there is just one stationary distribution which is
also the limit distribution for any start distribution.

45



Next, we show that µ and P satisfy the detailed balance equation

µ(x)p(x, y) = µ(y)p(y, x).

µ is then invariant for P (compare Remarks 4.33) and thus the unique limit distri-
bution.

First, assume without loss of generality µ(y)q(y,x)
µ(x)q(x,y)

< 1.

Then, we have

a(x, y) =
µ(y)q(y, x)

µ(x)q(x, y)
, p(x, y) =

µ(y)q(y, x)

µ(x)

and, because of µ(x)q(x,y)
µ(y)q(y,x)

> 1, also

a(y, x) = 1, p(y, x) = q(y, x).

In the case µ(y)q(y,x)
µ(x)q(x,y)

= 1 both equations for p(x, y) and p(y, x) are also valid.

Therefrom, one gets in any case the detailed balance µ(x)p(x, y) = µ(y)p(y, x). �

Remarks 4.37 A Metropolis-Hastings algorithm for the simulation of a Markov
chain with limit distribution µ is very simple:

Chose a proposal matrix Q.

Initialize X0 = x; set t = 0.

Repeat {

Sample a state y from proposal distribution q(x, .)

Sample a Uniform(0,1) random variable U

If U ≤ a(x, y) set Xt+1 = y

otherwise set Xt+1 = Xt

Increment t

}.
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Remarks 4.38 Main problems concerning the application of Metropolis-Hastings al-
gorithms (and MCMC in general) are:

• How many iterations are needed to be close to the interesting distribution µ
(burn-in)?

• After burn in, how many further steps are necessary to get good estimations for
the quantities of interest (stopping time)?

There is a lot of research ongoing to address such questions. Formal tools, like con-
vergence diagnostics, have been proposed. But often, when it comes to real appli-
cations, visual inspection and thumb rules prevail. Thus, obtained results often need
cautious interpretation.

Check for equilibrium: Gelman-Rubin statisics

One strategy to check the convergence of Markov chains is Gelman-Rubin statisics.
Assume we have several runs (say r) of same length N and we monitor some scalar
function fit = f(Xit), where Xit is the value of the i-th chain at time t. Convergence
of the chains is judged by comparing the between-sequence variances

B =
N

r − 1

r∑
i=1

(f̄i. − f̄..)
2, where f̄i. =

1

N

N∑
t=1

fit, f̄.. =
1

r

r∑
i=1

f̄i.

and the within-sequence variances

W =
1

r

r∑
i=1

s2
i , where s2

i =
1

N − 1

N∑
t=1

(fit − f̄i.)
2.

From B and W one constructs two estimates of the variance of f:

v̂ar(f) =
N − 1

N
W +

1

N
B and

√
R̂ =

√
v̂ar(f)

W
.

v̂ar(f) is an unbiased estimator (E(v̂ar(f) = var(f)) of the variance under station-
arity. In praxis, chains are only asymptotically stationary. Therefore, v̂ar(f) usually
overestimates var(f) (called ”conservative” estimator).

On the other hand, the within-sequence variance W usually underestimates var(f)
for finite realizations. Both estimators tend to var(f), but from different directions.
The ratio of these lower and upper bounds for var(f) is the Gelman-Rubin statistics√

R̂, also called estimated potential scale reduction. Its closeness to 1 is regarded
as indictor for equilibrium.
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Some prominent strategies for choosing proposal matrices are:

The metropolis algorithm (Metropolis et al., 1953) considers only symmetric pro-
posals of the form

q(x, y) = q(y, x)

for all x, y. The acceptance probability reduces to

a(x, y) = min(1,
µ(y)

µ(x)
).

Here, a new state y is always taken, if it is at least as probable as x. If y is less
probable than x, it has a chance µ(y)/µ(x) to be taken.

A special case is random-walk Metropolis with

q(x, y) = q(||x− y||),

where the dependence is a function of some defined distance ||x− y|| of x and y.

The independence sampler has proposals which do not depend on the current
state:

q(x, y) = q(y).

Here the acceptance is denoted as

a(x, y) = min(1,
w(y)

w(x)
),

with w(x) = µ(x)/q(x). For the independence sampler to work well the distribution q
should be chosen ”close” to µ. Recommendation is, to choose q heavier-tailed (more
spread out) than µ. This may prevent the Markov chain to get stuck:

Assume, q is chosen lighter-tailed than µ and x is accidentally in the tail of µ. A new
proposal y is probably not in the tail of µ. In this case the acceptance w(y)/w(x) is
very low and this freezes the state x.
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The single component Metropolis-Hastings algorithm applies Metropolis-Hastings
to the different components of states x = (x1, . . . , xn) separately. A candidate for yk

for an update of component k is generated from the proposal distribution

qk(xk; x−k, yk).

The probability for yk depends on xk and all the other components x−k of k. A usual
visiting scheme updates the components one after another. In this case component
1, . . . , k − 1 have already been updated when it is k’s turn.

The acceptance probability for yk

a(x, yk) = min(1,
µ(yk|x−k)qk(yk; y−k, xk)

µ(xk|x−k)qk(xk; x−k, yk)
) (57)

µ(xk|x−k) is called the full conditional distribution of the k-th coordinate X., k.

An important example of a single component technique is Gibbs sampling, intro-
duced before. Here, the proposal is the full conditional distribution and acceptance
a(x, y) ≡ 1. With the Gibbs form of µ one gets exactly (45):

p(x, y) =
{

Z−1
I exp(−H(yIxA\I)) for xA\I = yA\I ;

0 else.
(58)

Note, that contrary to Metropolis algorithms the proposal matrix depends on µ.

Remarks 4.39 Often it is not feasible to calculate the partition function Z for a
Gibbs measure

µ(x) =
1

Z
exp(−H(x)).

Fortunately, Metropolis-Hastings algorithms usually do not require Z. With a proposal
matrix G not depending on µ, one has a(x, y) as function of H(x)−H(y) alone. For
independence sampler and Gibbs sampling this is not valid, Z has to be calculated.
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Remarks 4.40 We state some features of ergodic Markov chains which are impor-
tant for an application of MCMC techniques.

Irreducible aperiodic (ergodic) Markov chains (Xn)n∈N0 with finite state
space and limit distribution µ satisfy:

Geometric convergence:

The convergence rate of the chain (convergence towards µ)is given by the eigenvalue
λ of P with second largest absolute value (1 = λ1 > |λ2| ≥ . . .):∑

y

|pN(x, y)− µ(y)| ≤ C|λ2|N . (59)

Here C is a suitable positive constant.

Ergodicity:

For any real valued function f which satisfies
∑

x f(x)µ(x) < ∞ and every initial
distribution ν the averages

fN =
1

N

N∑
t=1

f(Xt)

converge Pν- almost sure to the mean of f :

lim
N−>∞

fN =
∑
x

f(x)µ(x) = Eµ(f(X)). (60)

The last result is the main incentive to invoke Metropolis-Hastings algorithms.

Proofs and further results may be found in the literature, which is abundant in this
area. Good monographs are for example:

Pierre Brémaud: Markov Chains: Gibbs fields, MonteCarlo simulation, and queues.
Texts in applied mathematics, 31, Springer, New York 1999.

W.R. Gilks, S. Richardson and D.J. Spiegelhalter: Markov Chain Monte Carlo in
Practice. Interdisciplinary statistics, Chapman & Hall/CRC, New York, 1998.
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4.6 Simulated Annealing

The algorithms of the last sections simulate from limit distributions of homogeneous
Markov chains. In equilibrium, states occur (probably!) frequently if their limit
probability is high. In many applications one is interested only in states with highest
probability. A lot of numerical strategies exist to find (at least approximately) minima
(or maxima) of complicated numeric functions f . Techniques like steepest descent
start from some initial x0 and try to find x1 with f(x0) > f(x1). From x1, x2 is
derived, likewise. Continuing in this way, one gets a sequence x0, x1, x2, . . ., which
hopefully converges to a minimum of f . But, in general, such sequences only approach
local minima. Simulated annealing is invoked to avoid this problem and to find
with large probability global minima. We discuss simulated annealing in the context
of Gibbs distributions.

As before, let Ω be a finite state space and let the probability of states given by

µ(x) =
exp(−H(x))∑
y exp(−H(y))

,

with some real energy function H.

Definition 4.41 The Gibbs distribution with temperature T to energy H is
given by (T > 0)

µT (x) =
exp(−H(x)

T
)∑

y exp(−H(y)
T

)
. (61)

Example 4.42 Metropolis sampler with symmetric proposal matrix Q not dependent
on T and acceptance probability

aT (x, y) = min{1, exp(
H(x)−H(y)

T
)}

have limit distributions of form (61).

Now, let M be the set of global minima of energy H and |M | their number.

Theorem 4.43 As T approaches 0, µT is monotonically increasing for x ∈ M and
(finally) monotonically decreasing for x 6∈ M . Further, the following is valid:

lim
T→0

µT (x) =


1
|M | , if x ∈ M ;

0, else.
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Proof. Let m be the minimal value of H. Then one has

µT (x) =
exp(−H(x)

T
)∑

y exp(−H(y)
T

)

=
exp(− (H(x)−m)

T
)∑

y:H(y)=m exp(− (H(y)−m)
T

) +
∑

y:H(y) 6=m exp(− (H(y)−m)
T

)

If x or z are minima, the exponent disappears and the respective summand is 1. The
other exponents are strictly negative. The respective summands converge to 0 for
T → 0. Therefore, µT (x) increases monotonically to 1/|M | if x is a minimum and
tends to 0 else.

Now, assume x 6∈ M and set a(y) = H(y)−H(x) to receive

µT (x) =
1

|H(x) = H(y)|+∑
y:a(y)<0 exp(−a(y)

T
) +

∑
y:a(y)>0 exp(−a(y)

T
)
.

We have to show, that the denominator is finally growing. Differentiating it with
respect to T yields:∑

y:a(y)<0

a(y)

T 2
exp(−a(y)

T
) +

∑
y:a(y)>0

a(y)

T 2
exp(−a(y)

T
).

As T → 0, the second term tends to zero and the first one to ∞. Thus, the derivative
finally becomes positive and µT decreasing.

�

Remarks 4.44 According to the theorem, sampling for ”small” values of T provides,
almost exclusively, states witch achieve maximal values of the Gibbs distribution.

Remarks 4.45 For increasing T , every term in

exp(−H(x)
T

)∑
y exp(−H(y)

T
)

tends to 1, and therefore, µT tends to the uniform distribution on Ω.

Simulated annealing strategy:

The idea of simulated annealing is borrowed from annealing phenomenons in physics:
Compounds may crystallize only if they are slowly annealed from high to low tem-
peratures. Fast cooling may result in a disordered structure corresponding to a local
minimum of the free energy.

Simulated annealing is performed by running some Markov chain with limit distri-
bution µT . During the run of the chain, the temperature T is ”slowly” decreasing.
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Remarks 4.46 According to theorem (4.43), cooling causes µT to approach the uni-
form distribution on global maxima of µ. But, cooling during the run of the Markov
chain, causes the chain to be non homogeneous and convergence to a limit distribu-
tion is not at all clear. The cooling schedule, controlling the decrease of T plays
an essential role.

Several convergence theorems are known for simulated annealing. Without proof, we
state one involving the Metropolis sampler.

Theorem 4.47 There exists a constant γ > 0 with the property:

For convergence of Metropolis based simulated annealing, starting from any initial
state, it is necessary and sufficient that

∞∑
k=1

e
− γ

Tk = ∞.

Tk is the temperature at the step k of the Markov chain.

In particular, a logarithmic cooling schedule

Tk =
a

ln(k + 1)

provides convergence if and only if a ≥ γ.

Proof. Hajek, B.: Cooling schedule for optimal annealing.
Mathematics for Operations Research 13, 311-329, 1988. �

Remarks 4.48 Logarithmic cooling is extremely slow. Especially, if the involved
constants are large, low temperatures are not reached in acceptable times. In practice,
faster cooling schedules are applied. Convergence becomes then a delicate point, again.

Remarks 4.49 To make the proposal matrix in large state spaces more feasible a
neighborhood structure is introduced in Ω: Every state x is given a neighborhood N(x)
of states. Only these states can be reached from x in one step. This means, q(x, y) > 0
for y from the neighborhood of x and q(x, y) = 0 else. To get an irreducible Markov
chain one has to assure that all states communicate (communicating neighbor-
hoods).
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4.7 One example: double digest problem

A restriction endonuclease is an enzyme which cuts DNA at specific nucleotide
sequences. These molecular scissors have a variety of applications in genetics. In the
double digest problem (DDP) two different endonucleases are applied to 3 identical
DNA strings of length N . One string is cut by both endonucleases together, the other
strings suffer separate applications. As result, one gets three sets of sequence segments
(of total length N), which represent different cuts of ”the” considered string. The
task is to construct from those sets the location of the cuts in the original sequence.

The problem is NP-complete, which means, that it has the same complexity as,
for example, the travelling salesman problem. For such tasks no polynomial-time
algorithms are known and might even not exist.

A thorough discussion of the digest and related problems can be found in Waterman,
M.S.: Introduction to Computational Biology. Chapman and Hall, New York, 1995.
We only glimpse on the basic ideas of DDP:

Sort the s segments produced by both endonucleases together according to their size
c(i):

c(1) ≤ c(2) ≤ . . . ≤ c(s) (62)

Let A1, A2, . . . , An and B1, B2, . . . , Am be the pieces produced by the respective sepa-
rate applications. These sets can be represented (jointly) in m!n! different orderings.
Each joint ordering l represents s − 1 cuts which define again s segments. Denote
their size as dl(i) and sort them:

dl(1) ≤ dl(2) ≤ . . . ≤ dl(s) (63)

The d-sequences of some l should be equal to (62)

Example: Let the sets of segment length resulting from separate cuts be:

{1, 3, 3, 12},

{1, 2, 3, 3, 4, 6}

and the segment lengths after application of both endonucleases

{1, 1, 1, 1, 2, 2, 2, 3, 6}.

Then the sortings (1, 3, 12, 3), (2, 4, 6, 3, 3, 1) and (1, 3, 12, 3), (3, 3, 6, 1, 2, 4)
both produce solutions of the DDP.

54



Remarks 4.50 The non uniqueness in the example is typical. Using powerful re-
sults from probability theory (Kingman’s subadditive ergodic theorem) one can prove
that the number of solutions to the DDP increases exponentially with the total string
length N (Watermen, section 3.1). This bad performance makes the mapping of long
stretches of DNA a difficult task.

If measurement errors are involved, one looks for d-sequences most similar to the
c-sequence.

A common measure for similarity is the χ2-statistics:

f(l) =
s∑

i=1

(dl(i)− c(i))2

c(i)
(64)

Solving the DDP now means to find the minima of this function.

Waterman discusses the application of simulated annealing. The above f is used
as energy function. A neighborhood structure is introduced to the orderings: Two
orderings are neighbored if they differ at most in one switch between adjoining seg-
ments.

The technique is tested for the bacteriophage λ (N = 48502). Here, the the complete
sequence and thus the restriction sites are known.

The restrictions enzymes BamHI and EcoRI are applied to λ, producing cuts at the
following sites:

BamHI: 5509, 22350, 27976, 34503, 41736

EcoRI: 21230, 26108, 31751, 39172, 44976

The corresponding segment lengths are

{5509, 5626, 6527, 6766, 7233, 16841},

{3526, 4878, 5643, 5804, 7421, 21230},

{1120, 1868, 2564, 2752, 3240, 3526, 3758, 3775, 4669, 5509, 15721}.

Several runs invoking simulated annealing are produced. The initial configurations
are randomly chosen and the cooling schedules are proportional to 1/t. The number
of iterations t, required to solve the DDP and thus to recover the restriction map, is
in the order of several thousand.
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5 Hidden Markov Models

A hidden Markov model (HMM) is an extensions of a discrete-time Markov model.
Every state of a HMM emits a letter from some finite output alphabet A. Thus, a
running HMM produces a sequence of states X1, X2, . . . and a sequence of output
symbols O1, O2, . . .. The probability distribution on A, controlling the output, is
state dependent, but usually not time dependent. The states of the Markov model
themselves are often regarded as not observable (hidden).

As before, we assume a finite state space S, a initial distribution µ on S and a
transition matrix P.

The number of states and the transition matrix define the architecture of a HMM.

Often it is convenient to make the chain transient by adding a begin state B and
an end state E, both producing no output. The chain starts in B, never coming
back to B and stays in E (stops there) if it happened to be there.

Essentially, two architectures are distinguished:

Recurrent architecture:

All states (save B and E) are communicating. These states may be visited at any
time by the Markov chain.

Left-to-right architecture:

Here, a states which may be visited at a certain time are fixed beforehand. The chain
propagates, from left to right, through a path of possible states until E is reached.

Example 5.1 Mutation-deletion-insertion (MDI) architecture

MDI is a tool for the aligning multiple DNA or protein sequences. The state space
consists of mutation states (M1, . . . ,ML), insertion states (I1, . . . , IL) and deletion
states D1, . . . , DL. The output of M states are (for example) bases, randomly cho-
sen from a state dependent distribution. Analogously, I states produce site-specific
insertion of letters. D states are considered to produce no output.
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MDI architecture with 3 M states

The next feature of a HMM is the output it produces.

Definition 5.2 Let A = {a1, . . . aN} be the set of observation symbols of a HMM.
The time independent emission probability is for each state x and observation
symbol a given by

bx(a) = P (Ot = a|Xt = x),

defining the n ×m matrix B = (bx(a))x,a. The full set of parameters of a HMM
is denoted as

λ = (P,B, µ).

Given a sequence of observed HMM outputs O = o1, o2, . . . oT . Then, in HMM
applications one usually wants to answer the following questions:

A) What is the probability of O for a given parameter set λ?

B) What is the hidden sequence Q = x1, x2, . . . , xT of states with highest probability
P (Q|O)?

C) Which parameter set λ maximizes P (O|λ) for fixed graph structure of the un-
derlying Markov chain?

We will describe in the following algorithms which address these questions. Before
doing this, we illustrate and motivate the concept with a standard example in genetics:
CpG islands.
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5.1 Some motivation: CpG islands

In the human genome wherever the nucleotide CG occurs, the C nucleotide is typically
modified and mutates into a T (methylation). Write CpG for a dinucleotide to
distinguish it from the base pair C −G.

Because of the frequent mutation CpG −→ TpG, the CpG dinucleotides are rarer in
the genome than would be expected from the independent probabilities of C and G.

Methylation is suppressed in short stretches of the genome (around ’start’ regions of
genes). here we see more CpG islands than elsewhere. The CpG islands are typically
100-5000 bp long.

Typical questions concerning CpG islands are:

• Given a short stretch of genomic sequence, how would we decide if it comes
from a CpG island?

• Given a long piece of sequence, how would we find the CpG islands in it, if
there are any?

- The first question can be answered with ordinary Markov chains (Exercise!):

Two different areas (CpG islands and non-CpG area) have different transition
probabilities for the states {A, C,G, T}. For each kind of area one has a Markov
chain model. One is called the + model, the other the − model.

The transition probabilities p+(x, y) and p−(x, y) are estimated from known +
and − areas: Define

c+(x, y) = number of times base y follows x in + areas

and take the maximum likelihood estimators

p+(x, y) =
c+(x, y)∑
z c+(x, z)

.

Analogously, p−(x, y) is derived for − areas.
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For a given ’short stretch’ X we calculate the sequence probability with both
models and compare the two of them with the log odds ratio

S(X) = log
P (X|model+)

P (X|model−)
.

- For the second question a HMM is adequate:

To simulate in one model the ’islands in a sea of non-island genomic sequence’,
one combines the Markov chains from the + and the − model in one HMM
model.

Now, the space of hidden states is denoted as

S = {A+, C+, G+, T+, A−, C−, G−, T−}

and the observation symbols are

{A, C,G, T}.

The states A+, C+, G+, T+ represent + areas and and states A−, C−, G−, T−

representing − areas. The symbols X+ and X− exclusively emit the observable
symbol X.

Identifying CpG islands in a genomic sequence corresponds to the search for
the most probable hidden sequence in this HMM.

This is just problem B), stated before.

In the following we present the efficient algorithms which are used to address the
problems A) to C).
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5.2 The forward and backward algorithm

The forward algorithm allows an efficient calculation of the probability P (O|λ)
mentioned in question A).

Essential for the algorithm is the calculation of the

forward variables
α(t, x) = P (o1, . . . , ot, Xt = x). (65)

This is the joint probability for the sequence of observations o1, . . . , ot and that the
state at time t is x.

Given the full parameter set λ, α(t, x) can be calculated inductively on t.

initialization :
α(1, x) = µ(x)bx(o1) (66)

iteration : α(t + 1, x) =
∑

y P (o1, . . . , ot+1, Xt = y, Xt+1 = x) gives

α(t + 1, x) =
∑
y

α(t, y)p(y, x)bx(ot+1). (67)

This algorithm provides α(T, x) for all x.

Therefrom, P (O|λ) follows:

P (O|λ) =
∑
x

α(T, x) (68)

The algorithm requires on the order of TN2 computations. This is highly efficient
compared to ”naive” strategies which calculate the required probability from

P (O|λ) =
∑
Q

P (O|Q, λ)P (Q|λ) (exercise!).

A different approach to solve problem A) is the backward algorithm. It runs back
in time t. The associated backward variables are the conditional probabilities

β(t, x) = P (ot+1, . . . , oT |Xt = x). (69)
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The corresponding recursion is:

initialization :
β(T − 1, x) =

∑
y

p(x, y)by(oT ) (70)

and for t ≤ T − 1

iteration :
β(t− 1, x) =

∑
y

p(x, y)by(ot)β(t, y). (71)

From these equations one calculates first β(T − 1, x) for all x and steps then down
to β(1, x) to get

P (O|λ) =
∑
x

µ(x)β(1, x)bx(o1). (72)

Remarks 5.2 The (posterior) probability P (Xt = x|O, λ) of a certain state x at
time t, conditioned on the observed sequence o1, . . . , oT can easily be calculated from
P (O|λ), α(t, x) and β(t, x) (exercise!):

P (Xt = x|O, λ) =
α(t, x)β(t, x)

P (O|λ)
. (73)

In some applications one is not interested in the hidden states themselves, but, in de-
rived quantities therefrom. Assume for example, that one has a function g(x) defined
on the states. From P (Xt = x|O, λ) one could then calculate the derived expression

G(t|O) =
∑
x

P (Xt = x|O, λ)g(x). (74)

G(t|O) models some feature of the Markov chain at ”time” t. Important special cases
have g zero on a subset of states and one on the complement:

Example 5.3 Posterior decoding of CpG islands

In the CpG model, introduced above, one may ask if a certain site t belongs to an
island or not. One defines g(x) = 1 for x ∈ {A+, C+, G+, T+} and g(x) = 0 for
x ∈ {A−, C−, G−, T−}. The quantity G(t|O) then defines the (posterior) probability
that a base observed at position t is in a CpG island.
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5.3 The Viterbi algorithm

The Viterbi algorithm yields a solution to our stated problem B):

A sequence of states which have highest probability P (Q|O) is assigned to the ob-
served sequence O.

First one defines δt(x) as the maximal probability for a path (sequence of states) to
end in x at time t and produce output o1, . . . , ot:

δt(x) = max
y1,...yt−1

P (y1, . . . , yt−1, Xt = x, o1, . . . , ot) (75)

For the joint probabilities P (Q, O) then

max
Q

P (Q,O) = max
x

δT (x)

is valid. Since P (O) does not depend on Q, it follows from

P (Q|O) =
P (Q, O)

P (O)

that the maximum of P (Q,O) and the maximum of P (Q|O) are attained at the same
Q.

The entities δt(x) can again be calculated by induction:

initialization : For all states x one has

δ1(x) = π(x)bx(o1). (76)

iteration : For 2 ≤ t ≤ T and all states x set

δt(x) = max
y

δt−1(y)p(y, x)bx(ot). (77)

Therefrom, a most probable hidden sequence x̂1, . . . , x̂T can be found:

x̂T = argmaxxδT (x) (78)

and for t ≤ T − 1
x̂t = argmaxxδt(x)p(x, x̂t+1). (79)

Note, that the involved maxima need not be unique. In this case one chooses any
solution.
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5.4 The Baum-Welch method

Now we are concerned with the problem of identifying the parameters of the HMM,
given a predefined topology (question C)).

A) If we have training sequences where all paths of hidden states are
known, the parameters can be estimated with maximum likelihood tech-
niques.

This is for example the case in our CpG islands HMM, when all the islands are known
beforehand.

In the training set, let N(x) be the count of first states being x, N(x, y) the
count of transitions from state x to state y and N(x, o) the count of emissions
of observable o from state x.

The maximum likelihood estimators πML for the initial distribution, pML(x, y) for
the transition probability and bML

x (o) for the emission probability are then given by

πML(x) =
N(x)∑
z N(z)

, (80)

pML(x, y) =
N(x, y)∑
z N(x, z)

(81)

and

bML
x (o) =

N(x, o)∑
o′ N(x, o′)

. (82)

Recall, that if the training set is small, overfitting may occur. In this case it might
be recommended to add pseudocounts (compare (3.6) and (3.7)).

B) If the parameters have to be estimated from training sequences with
unknown paths (hidden states) the Baum-Welch algorithm is applied.

The Baum-Welch algorithm is an EM algorithm (compare section (3.2)).

Essentially, the unknown numbers N(x), N(x, y) and N(x, o) are substituted by
expectations EN(x), EN(x, y) and EN(x, o), calculated from the observations of
the training sequences and conditioning on current values of λ.

(Note of care: To simplify notations, we often leave out the dependency on λ.)

From EN(x), EN(x, y) and EN(x, o) the estimates for initial, transition and emission
probabilities are updated, by again using (80), (81) and (82) (change N to EN).
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The mentioned strategy will now be described in more detail.

Let the index g denote training sequence number g.

From equation (73) one gets

P (X1 = x|O, λ) =
α(1, x)β(1, x)

P (O)
. (83)

Further one has (exercise!)

P (Xt = x, Xt+1 = y|O, λ) =
α(t, x)p(x, y)by(ot+1)β(t + 1, y)

P (O)
. (84)

The expected values are obtained by summing up for t and all g:

EN(x) =
∑
g

1

P (Og)
αg(1, x)βg(1, x), (85)

EN(x, y) =
∑
g

1

P (Og)

∑
t

αg(t, x)p(x, y)by(ot+1)β
g(t + 1, y), (86)

EN(x, o) =
∑
g

1

P (Og)

∑
t:Ot=o

αg(t, x)βg(t, x). (87)

Remarks 5.4 The described strategy is rather involving: For each sequence in the
training set a forward and a backward algorithm has to be run to get the required
variables α and β.

Values for the EN depend on the size of the training set. This dependence is cancelled
in the ratios required for the ML estimators.

Now, we can state the Baum-Welch algorithm.
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Baum-Welch algorithm:

Initialization:

Start with some arbitrarily chosen λ.

Choose some initial EN(x), EN(x, y) and EN(x, o).

Recurrence:

1. For all sequences g calculate the forward and backward variables αg(t, x) and βg(t, x).

2. Calculate new values of EN(x), EN(x, y) and EN(x, o) using (85) (86) and
(87).

3. Calculate the new model parameters using (80), (81) and (82) (with N replaced
by EN)

4. Calculate the new log likelihood of the model

Termination:

Stop if the change in the log likelihood is less than some threshold.

Else go to 1.

The following two theorems show that the Baum-Welch algorithm is a special case
of an EM algorithm.

Recall, that we are looking for maximal values of the log likelihood

log P (O|λ) = log
∑
Q

P (O,Q|λ).

The hidden sequences Q are the missing data, not to be confused with the Q-function
from the EM equations:

Q(λ|λn) =
∑
Q

P (Q|O, λn) log P (O, Q|λ) (88)
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Theorem 5.5 The Q-function of the Baum-Welch algorithm is

Q(λ|λn) =
∑
x

EN(x) log(π(x))+
∑
x

∑
o

EN(x, o) log(bx(o))+
∑
x

∑
y

EN(x, y) log(p(x, y)).

Proof.

Denote for a fixed sequence Q the number of transitions from x to y as N(x, y|Q)
and likewise, the number of emissions o from state x as N(x, o|Q). Further, define
N(x|Q) as equal to one, if x is the first state in sequence Q and zero else.

The joint probability of an observation O and a hidden sequence Q can be calculated
with conditioning on some λ as

P (O,Q|λ) =
∏
x

π(x)N(x|Q)
∏
x

∏
o

bx(o)
N(x,o|Q)

∏
x

∏
y

p(x, y)N(x,y|Q). (89)

Therefrom, one gets with the definition of the Q-function and a current value of λn

Q(λ|λn) =
∑
Q

P (Q|O, λn)
(∑

x

N(x|Q) log(π(x)) +
∑
x

∑
o

N(x, o|Q) log(bx(o)) (90)

+
∑
x

∑
y

N(x, y|Q) log(p(x, y))
)

Now, the above defined expectations EN(x), EN(x, y) and EN(x, o) calculated under
the current model λn can be written:

EN(x) =
∑
Q

P (Q|O, λn)N(x|Q), (91)

EN(x, y) =
∑
Q

P (Q|O, λn)N(x, y|Q), (92)

EN(x, o) =
∑
Q

P (Q|O, λn)N(x, o|Q). (93)

Inserting these equations in (90) gives the required representation of the Q function.
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Theorem 5.6 The Q-function Q(λ|λn) of theorem (5.5) is maximized for λn+1 com-
prising the parameters

p(n+1)(x, y) =
EN(x, y)∑
z EN(x, z)

,

b(n+1)
x (o) =

EN(x, o)∑
o′ EN(x, o′)

,

π(n+1)(x) =
EN(x)∑
z EN(z)

),

with the EN corresponding to λn.

Proof. The difference between Q(λn+1|λn) with λn+1 defined as above and Q(λ|λn)
with any λ is

Q(λn+1|λn)−Q(λ|λn) =
∑
x

∑
y

EN(x, y) log
(p(n+1)(x, y)

p(x, y)

)

+
∑
x

∑
o

EN(x, o) log
(b(n+1)

x (o)

bx(o)

)
+
∑
x

EN(x) log
(π(n+1)(x)

π(x)

)

=
∑
x

∑
z

EN(x, z)
∑
y

p(n+1)(x, y) log
(p(n+1)(x, y)

p(x, y)

)

+
∑
x

∑
o′

EN(x, o′)
∑
o

b(n+1)
x (o) log

(b(n+1)
x (o)

bx(o)

)

+
∑
z

EN(z)
∑
x

π(n+1)(x) log
(π(n+1)(x)

π(x)

)
.

The last three terms are positive linear combinations of relative entropies. Thus
Q(λn+1|λn)−Q(λ|λn) is nonnegative and zero if one chooses for all x, y and o

p(x, y) := p(n+1)(x, y),

bx(o) := b(n+1)
x (o),

π(x) := π(n+1)(x).
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